TESLA LC === European XFEL

R. Brinkmann, ITRP Meeting DESY, April 2004

XFEL Project - brief overview

- 4th generation SR user facility with SASE-FEL concept in the 1 – 100 Angstroem (→ 0.5Å) wavelength (1st harmonic) and 100fs (→ < 1fs) pulse length regime
- In 1st stage 3 SASE & 2 spontaneous undulator beam lines, 10 experimental stations
- Driver: 1.5km linac in TESLA technology, 20GeV beam energy @ 23MV/m gradient

Overview cont'd

- German government Feb. 2003: go-ahead for XFEL as European project, incl. funding 50% of total 684 M€ (year 2000) project cost, + contribution from Länder HH & Schleswig-Holstein, ~ 40% European Partners
- Project organisation at Europ. Level (scientific/technical & administrative/financial) ongoing, completed in 2005

New XFEL site: independent from LC site 150 y_rms [nm] 100 **50** 12/// t XFEL position along site Holzki Schleswig-Osdorfer Borr Hamburg PETRA HERA **Deutsches** Elektronen-Synchrotron DESY Osdorf Iserbrook

Accelerator reference parameters

Main linac		
Energy gain	0.5 → 20 GeV	
# installed modules	116	
# active modules	104	
acc gradient	22.9 MV/m	
# installed klystrons	29	
Bunch spacing	200 ns	
beam current	5 mA	
power→beam p. klystron	3.8 MW	
incl. 10% + 15% overhead	4.8 MW	
matched Q _{ext}	4.6·10 ⁶	
RF pulse	1.37 ms	
Beam pulse	0.65 ms	
Rep. rate	10 Hz	
Av. Beam power *	650 kW	
Total AC power	≈ 9 MW	

^{*} Power limitation to ~300kW per beamline > solid beam dump possible

Photon wavelength vs. acc gradient

→ 25 GeV is reasonable upper limit for layout of beam line magnets

Linac technology

- Will build 120 accelerator modules (~ 1000 cavities) and 32 RF stations in industry – requires everything also needed for the the LC, except:
 - 17m (12 cav's) instead of 12m (8 cav's) modules (marginal gain in fill factor)
 - Shortened inter-cavity spacing & superstructure (fill factor/cost advantage not well balanced with extra R&D effort)
 - RF stations de-rated in peak power not in average power!
 (higher rep rate/duty cycle desirable by users)

Cryogenic plant equal to one of the six TESLA-500 LC plants \rightarrow Cryogenic limit for CW operation is $E_{acc} = 7MV/m$ (6 GeV), if $Q_0 = 2.10^{10}$

Layout with single linac tunnel

E.g.:

Electronics in tunnel/radiation environment (→ test in DESY-LINAC-II)

Handling of RF and cavity, power supply failures

Stray fields?

Supports and alignment

Figure 3. Main LINAC, Damping Ring & Klystron Station

Beam dynamics

(assuming same alignment tolerances; comparison not exhaustive; rough scaling ±factor 2 for some of the XFEL parms)

Issue	parameter	TESLA LC	XFEL	comment
m.b. transverse wake	peak orbit ampl.	1σ	0.2σ - 0.4σ	intra-train feed- forward!
BC / Φ_{RF} error	Δ E, time, σ_z	O(0.1°)	O(0.01°)	
Synchronisation	Δt	<0.5ps	<0.05ps	
1μm Orbit stab. BDS / undulator	Δε/ε / Δ y '	few %	0.1σ'	intra-train feedback!
Energy jitter	ΔΕ/Ε	O(10 ⁻⁴)	(O10 ⁻⁴)	

Beam dynamics cont'd

 Inertial an non-inertial (CSR!) space charge effects very critical for XFEL → advanced instrumentation and beam diagnostics required (e.g., bunch slice analysis)

 We have obtained and will obtain more invaluable experience from TTF & VUV-FEL!

Intra-train beam stabilisation

- From ground vibration: jitter $\sim 0.1\sigma$ at end of linac
 - Can be enhanced during "single events" e.g. heavy traffic, and by quad support eigenmodes
 - Other effects: stray fields, HOMs, ...
- → feedback system between linac and distribution to undulators

Also active stabilisation of energy and possibly other beam parameters

Different users – different time structures

Generation of bunch train patterns:

- At the source → varying transient effects in the entire accelerator (handled e.g. by the LLRF system)
- At the beam delivery/distribution system → more challenging kicker devices → very similar to damping rings kickers!

Conclusions

- Major components of the XFEL facility are the same as (or very similar to) the ones needed for the s.c. Linear Collider
- The benefits of the XFEL project for a later LC project regarding accelerator design, industrialisation, fabrication and testing of components, operational aspects (controls, reliability, MPS, ...) are obvious
- last, but certainly not least, the expertise and motivation of the scientists, engineers, technicians, ... involved in the preparation and construction of the XFEL represent an invaluable "human capital" for a future s.c. LC project